
Two-Channel Coding with Application to
Physical Mail

Bertrand Haas
Pitney Bowes, MS 26-31

Shelton, CT 06484
USA

Abstract

We consider here the situation where two or more paral-
lel channels of different capacity and different robustness
to noise are simultaneously used to communicate a mes-
sage. We propose a scheme that takes advantage of this
situation to combine compression and error handling. We
demonstrate the advantage of this scheme through an im-
plementation in physical mail.1

Introduction

The preferred situation in Shanon’s Theory of Communi-
cation is that of a single channel. However, in many real
life applications it makes sense to distinguish between two
or more channels during communication. For instance, it
is often the case that the accuracy of transmission of an im-
age is much higher than the human accuracy of perception.
This allows the transmission of subliminal information at
the same time than the intended human perceivable im-
age information. Information Hiding (watermarking and
steganography) extensively uses the subliminal channel
capacity (while lossy data compression tends to reduce it).
However data hidden in images is often more sensitive to
degradation due to noise. In other words, the subliminal
channel is more fragile. We consider here two coexisting
channels, one fragile and one robust. If the robust channel
had much larger capacity than the fragile one, the advan-
tage of using both would fade out. Therefore we assume
some capacity constraint on the robust channel relative to
the fragile one. This is exactly the situation in the physi-
cal postal application described in section ”Application to
a physical mail system”.

For simplicity of exposition, we consider here the trans-
mission of an alphanumeric message (with an alphabet of
more than 2 characters) coded as a binary string. The gen-
eration of a message is often modeled according to the
iid (Independent Identically Distributed random variables)
model. It is a convenient model since it is easy to work
with, but it is mostly a first approximation, in particular for
English text, where correlation between characters is clear
(for example ”t” and ”h” are often adjacent). For clar-

1The author thanks Leon Pintsov for his motivating suggestions

ity of exposition we will develop our compression scheme
within the iid model, but it is understood that some addi-
tional steps would make it work as well in a more accurate
model. For instance, the alphabet can be expanded to in-
clude pairs of characters that are highly correlated (like
”th”).

A long message has to be compressed before being
transmitted through any channel. The best compression
algorithms usually use binary strings of variable lengths
to encode characters. A typical such algorithm is Huffman
coding. It is provably the best algorithm in the iid model,
but it suffers from ”fragility” (like most variable length
coding). Indeed if a bit error occurs in the compressed
binary string during transmission, the rest of the message
is mostly unrecoverable. To avoid this problem, a good
error correction algorithm is necessary; with the obvious
drawback of size increase. This combination of compres-
sion and error correction results in removing useless re-
dundancy and adding useful ones. However, in many ap-
plications, error correction is too much of a luxury, as the
increased size of the message becomes prohibitive, and
softer error handling is sufficient. For instance, electronic
packet transmission often requires only error detection; if
an error is detected the packet is retransmitted. In some
applications a few errors might be tolerable and only error
containment is sufficient, that is, a bit error only affects the
corresponding codeword and not the rest of the message.

The compression algorithm we propose here takes ad-
vantage of the presence of a robust channel of lower ca-
pacity and a fragile channel of higher capacity. The output
of the compression is a pair of binary strings. A shorter
fragile (in the same sense as in Huffman coding) string
that is intended to be sent through the robust channel, and
a longer robust (in the sense of error containment) string
that is intended to be sent through the fragile channel. We
therefore combine efficient compression and error han-
dling in one step.

The Compression Algorithm

The variable input of the algorithm is a string of charac-
ters and the output is a pair (robust string, fragile string).
The parameter input are two dictionaries (which are made
public). We assume we have a large sample of messages,

DPP2005: IS&T's International Conference on Digital Production Printing and Industrial Applications

114



in order to gather the statistic parameters necessary to con-
struct these dictionaries.

The first codeword dictionnary

Let m be the size of the character alphabet. A character
frequency count on a large sample of initial messages is
first performed. The characters are then ordered by de-
creasing frequency. A code dictionary is then constructed
by associating binary strings to the characters in the fol-
lowing way: The characters between the positions 2i − 1
and 2i+1 − 2 are associated with all the binary strings of
length i (up to the length of the alphabet). The order in
which the strings are associated to the characters within
this range is unimportant for the sole purpose of compres-
sion. So the two first (therefore most frequent) characters
are coded with the length one strings ”0” and ”1”.

The robust and the raw fragile string

From an initial message (a string of characters), a binary
robust string is produced simply by replacing the charac-
ters of the messages by the corresponding codewords of
the first dictionary. At the same time, a ”raw” fragile string
(non binary) is produced by sequentially recording the bit
length of the codewords for each character of the message.
To decode the pair of strings, one places periods in the ro-
bust string at the positions specified by the fragile string.
This delimitates the codewords, and one can then replace
each codeword by its associated character using the first
dictionary. The reason why the two strings are called ”ro-
bust” and ”fragile” now becomes clear: If one error occurs
in the fragile string all the periods there and after will be
shifted, and the rest of the robust string will be wrongly
decoded. If one bit error occurs in the robust string, then
the error is confined to its codeword and does not affect
the rest of the decoding.

The second codeword dictionary and the fragile string

The raw fragile string still has to be encoded to produce
the final binary string. Here the characters of the raw frag-
ile string are lengths of codewords of the first dictionary.
So if L1 is the length of the first alphabet (the characters
for the initial messages) , the length L2 of the second al-
phabet (the characters for the raw fragile strings) is:

L2 = ceil(log2(L1))

that is, substantially smaller than L1. So the second al-
phabet can be coded with ceil(log2(L2)) bits per charac-
ter. However, we can do better by compressing again the
raw fragile string. Since the correlation between lengths
of codewords in the robust string can be expected to be
much lower than the correlation between codewords them-
selves, the iid model can be expected to be rather good for
the generation of raw fragile strings.

Huffman coding is therefore a natural choice. Moreover,
the raw fragile string being already fragile in the sense
described above, encoding it with the Huffman algorithm
will not really make it more fragile. The large sample of
raw fragile strings is used to construct the Huffman tree
and the associated dictionary (we call it the second dic-
tionary). Raw fragile strings can then now be Huffman
encoded to produce the final fragile strings.

Application to a physical mail system

An indicium is a postage label that is printed directly on
the mail piece (or perhaps on a sticker to be appended to
the mail piece) and that acts as a proof of payment for
the postal service. We consider here the generation by a
printer-meter of an indicium that contains several parts,
among which only two are of interest for our purpose:
a variable grey level image of high enough complexity
so that a substantial amount of information can reliably
be hidden in it; and a two dimensional Datamatrix bar-
code with some standard information (meter identification
number, some meter accounting data, postage denomina-
tion, etc.) encoded and cryptographically signed. See fig-
ure 1.

Figure 1: An example of indicium

The robust and the fragile channels

The data capacity of a barcode is mostly taken by the
standard information and the cryptographic signature, and
only 20 bytes are available to embed other kinds of in-
formation. Since the Datamatrix barcode is a very simple
monochrome graphic designed to be read by a machine af-
ter being printed on papers from a wide range of quality,
and since it has error correction (Reed-Solomon) built-in,
we can consider it a robust channel, with limited capacity
(20 bytes) for our purpose.
The fragile channel is the image together with a water-
marking algorithm that allows to have a minimum of 30
bytes of information embedded into it. The print and scan
process always distorts the image and introduces errors
when the hidden information is retrieved. In particular,
even though the ink in the printer with which the indi-
cium is printed is of high quality, the paper on which it is
printed is not under control. As a result the printed image
may suffer from poor ink-paper interaction. We use, how-
ever, a watermarking algorithm that encodes each bit of

DPP2005: IS&T's International Conference on Digital Production Printing and Industrial Applications

115



the message in a block. We thus can assume that in recov-
ering the message, bits may be misread but not missed.

The purpose of two-channel compression for the appli-
cation

In the printer-meter under consideration the recipient ad-
dresses are also printed on the mail pieces (at the same
handling time than the indicium, but with a different print-
head). The occasion to include also some information
about the address (for more thorough verification) is not
missed, but the preferred way is usually to hash the ad-
dress to 20 bytes and include the hash in the barcode. The
main drawback is that at verification point the address is
OCR-read (Optical Character Recognition) and some er-
rors may occur. The resulting hash is then very different
than the hash in the barcode and when the two are com-
pared, the mail piece is marked for further investigation.
We propose here to use the two-channel coding described
above encode the full address, instead of a hash, in both
the barcode and the image. At verification point, the ad-
dress retrieved by decompression is then compared to the
OCR-read one, and only in cases where the two are very
different will the mail piece be out-streamed.
In order to fit the address into the allowed 20 bytes of ro-
bust channel and 32 bytes of fragile channel, we first trans-
form the address by concatenating the three address lines,
removing all white characters and making all alphabetic
characters upper case. We call the result the initial (ad-
dress) string.

The compression results on addresses

We used a sample of 3, 000 regular addresses to construct
the dictionaries. The results are as follows: The frequency
distribution of characters is shown on figure 2. The dictio-
nary inferred from these frequencies is shown on table 1.
Robust strings and fragile raw strings are then computed.
The distribution of the codeword length is shown in table
2 together with the deduced Huffman dictionary for the
fragile strings. For instance the address

Bertrand Haas
1234 Fifth Avenue
La Bella Citta, AB 09876

produces the robust 128 bits string:
1010110001000001101010001111001000110100000
0001000000001010110110000101100101010100100
100110100000001100010101001111111001111001
and the 109 bits fragile string:
1000101010100111111100100101111010100001100
0011100110001111000111001100011111001111101
01001000001101110101010

Figure 2: The distribution of characters in the initial address
string.

’A’ 0 ’P’ 0001 ’F’ 00000
’E’ 1 ’2’ 0010 ’K’ 00001
’T’ 00 ’3’ 0011 ’J’ 00010
’S’ 01 ’4’ 0100 ’X’ 00011
’R’ 10 ’U’ 0101 ’Z’ 00100
’O’ 11 ’5’ 0110 ’&’ 00101
’N’ 000 ’7’ 0111 ’Q’ 00110
’L’ 001 ’G’ 1000 ’-’ 00111
’I’ 010 ’6’ 1001 ’/’ 01000
’C’ 011 ’B’ 1010 ’.’ 01001
’0’ 100 ’Y’ 1011 ’)’ 01010
’H’ 101 ’W’ 1100 ’(’ 01011
’D’ 110 ’V’ 1101 ’,’ 01100
’1’ 111 ’8’ 1110 ’+’ 01101
’M’ 0000 ’9’ 1111 ’#’ 01110

Table 1: The first dictionary

Statistical results

In table 3 we summarized the mean, standard deviation,
minimum and maximum, of the bit lengths of the follow-
ing: The initial address encoded with 8 bits, The robust
strings, the fragile strings, and to gauge the compression
efficiency, the total length (the sum of the two previous)
to be compared with the length of the full Huffman en-
coded addresses. We collected these parameters on the
same sample of 3, 000 addresses we used to construct the
dictionaries.

We see that the maximal length for the robust strings,
193 bits, is below the capacity of the watermark (32×8 =

’3’ 39064 11
’4’ 33661 10
’2’ 31517 01
’1’ 18931 001
’5’ 3663 000

Table 2: The second dictionary (with character frequencies)

DPP2005: IS&T's International Conference on Digital Production Printing and Industrial Applications

116



mean std. dev. min. max.
initial address 338.1 55.4 160 568

robust string 117.3 19.2 64 193
fragile string 92 15.6 41 158

total length 209.3 34.2 105 347
Huffman encoded 202 32.6 100 344

Table 3: Statistical results on bit lengths

256 bits), and the mean length, 117.3 bits, is less than
half this capacity. This means that we can optionally add
some redundancy, in the form of error correction coding,
to the addresses to make them more robust to the print-
scan channel.
The maximum length of the fragile string, 158 bits, is right
below the allowed capacity of the barcode (20×8 = 160).
It may happen that an address produces a fragile string
longer than 160 bits even though some user limitations to
the length of the address input is embedded in the printer.
In that case, it is always possible to crop the initial address
string of some characters in order to shorten the fragile
string below 161 bits.
The compression rate (length of compressed address di-
vided by length of initial address) averages 61.9% for two-
channel coding and 59.8% for Huffman coding. We thus
lose 1.1% in compression rate, but we gain in error robust-
ness for 56% of the compressed message, that is a rather
good trade-off.

The MATLAB scripts

We include here below two MATLAB scripts used to im-
plement our compression algorithm. Their both input a
3 × n cell array (the three rows correspond to the stan-
dard three lines of the addresses, and the n columns to n
addresses; n should be large for the first script. The first
script produces a structure C with fileds C.alphab (the al-
phabet of the initial address strings), C.freq (the frequen-
cies of the alphabet characters), and C.cwords (the code-
words associated to the alphabet characters). The alpha-
bet and codewords are ordered by decreasing frequencies.
The second script encodes addresses and takes also as in-
put the code computed by the first script, and the Huffman
dictionary (to be computed with another script). The out-
put is a structure B with fields B.rob (the robust string) and
B.frag (the fragile string).

function C = makeTCcode(A)
S = strcat(A{:});
S = upper(S); S = regexprep(S,’ ’,’’);
numS = uint8(S);
freq = hist(numS, 32:126);
pos = find(freq);
alphcar = char(pos+31);
alphcell = cellstr(alphcar’)’;

freq = freq(pos);
[ofreq, ix] = sort(freq,’descend’);
C.alphab = alphcell(ix);
C.freq = ofreq;
n = length(C.freq); C.cwords = cell(1,n);
for i = 1:ceil(log2(n))

c = cellstr(num2str(dec2bin(0:(2ˆi- ))));
c = c(1:min((n - 2ˆi + 2), 2ˆi));
C.cwords((2ˆi-1):min(n,(2ˆ(i+1)-2)))=c;

end

function B = dualencode(A1,C,Hf)
A = strcat(A1{:});
A = regexprep(A,’ ’,’’); A = upper(A);
n = length(A); pos = zeros(1,n);
for i = 1:n

pos(i) = strmatch(A(i), C.alphab);
end
B.rob = ’’;
for i = 1:n

B.rob = strcat(B.rob, C.cwords(pos(i)));
end
B.rob = char(B.rob);
frag = [];
for i = 1:n

frag = [frag length(C.cwords{pos(i)})];
end
B.hfrag = ...
huffencode(cellstr(num2str(B.frag)),Hf);

References

1. Khalid Sayood, Introduction to Data Compression, Morgan
Kauffmann (2000).

Biography

Bertrand Haas received his Ph.D. in Mathematics from
the University of Basel in Switzerland in 1998. After a
postdoctoral year at the Fields Institute and the University
of Toronto, a subsequent year at the Mathematical Sci-
ence Research Institute and the University of California
at Berkeley, and two years of professorship at Michigan
State University, Bertrand joined the Research and Devel-
opment team at Pitney Bowes. Since then he has been
working on cryptography, coding theory and image pro-
cessing and their many applications to concrete engineer-
ing problems. He is a member of IEEE.

DPP2005: IS&T's International Conference on Digital Production Printing and Industrial Applications

117


	32272
	32273
	32274
	32275
	32276
	32277
	32278
	32280
	32281
	32282
	32284
	32283
	32285
	32286
	32287
	32288
	32289
	32290
	32291
	32292
	32293
	32294
	32295
	32296
	32297
	32298
	32299
	32300
	32301
	32302
	32303
	32304
	32305
	32306
	32307
	32308
	32309
	32310
	32311
	32312
	32313
	32314
	32315
	32316
	32317
	32318
	32319
	32320
	32321
	32322
	32323
	32324
	32325
	32326
	32327
	32328
	32329
	32333
	32330
	32331
	32332
	32334
	32335
	32336
	32337
	32338
	32339
	32340
	32341
	32342
	32343
	32344
	32345
	32347
	32348
	32349
	32350
	32351
	32352
	32353
	32354
	32355
	32356
	32357
	32358
	32359
	32360



